The Cooling Effect of Coatings
Short of physical shading, the best way to achieve a cool roof is by coating it, whether in the factory by the roofing material OEM or applied in the field by a professional coating contractor.
However, not all coatings provide the performance needed to achieve high TSR, LRV and thermal emittance. For example, exterior latex and premium acrylic binders in paints will break down when exposed to solar irradiance, allowing dirt, mold and mildew to infiltrate the coated surface, which reduces TSR and related energy savings. This break down is called film erosion, where the coating chalks and wears away from the substrate and will continue to do so until the coating no longer protects the surface.
Coating systems formulated with polyvinylidene fluoride (PVDF) resin, on the other hand, resist photochemical degradation to deliver better long-term protection. PVDF's incredibly strong carbon-fluorine bonds stand up to film erosion, even under exposure to the elements, allowing its protective properties—including TSR, dirt shedding, algae and mold resistance, color retention and chalking resistance—to last significantly longer. Dirt shedding and algae/mold resistance properties are particularly important as dirty surfaces reduce solar reflectance.
A coating's pigments also play a crucial role in its TSR, LRV and thermal emittance properties. For example, organic pigments can break down over time when exposed to UV energy and the elements. Complex inorganic pigments, on the other hand, contain mixed metal oxides that reflect the sun's rays. In comparison to organic pigments, complex inorganics, especially IR-reflective types, and when used in a PVDF-based formulation, are encapsulated by the fluoropolymer for additional protection from the elemental exposure that can break them down and therefore maintaining their color for much longer.