Energy Efficiency and Air Leakage
There is a direct relationship between energy efficiency and air leakage. Therefore, a discussion about cold storage buildings would not be complete without some background about energy efficiency and air leakage. Energy standards have improved over the past 20 years, and these improvements have increased energy efficiency of buildings overall. Roofs can be a large portion of the building enclosure for one and two-story buildings. It’s important to manage the energy use of buildings, especially cold storage buildings that are users of large amounts of electricity.
Managing energy use starts with the design of the building enclosure. The building enclosure encompasses all six sides of a building, but oftentimes the interior of a cold storage building will have multiple interior space conditions, such as a loading dock or the office portion of the building. A cold storage unit within a larger storage facility with open truck docks, office space, and semi-conditioned storage can create a network of separate interior conditions that can lead to difficult enclosure tie-ins and connections between spaces with varying working environments.
The keys to managing energy include properly insulating the building enclosure and interior separations and reducing air leakage for a cold storage building. Every roof penetration is a potential air leakage location and should include air-sealing components. Because a roof can be such a large part of the building enclosure, it plays a large role in the overall energy efficiency of a building. In fact, energy efficiency has been shown to be improved in all climate zones when air barriers are used.2
For air to move into or through the building enclosure, two things are needed. First, there needs to be a pressure differential. This pressure differential can come from wind, stack effect or mechanical ventilation. Second, airflow needs a pathway into or through the building enclosure. Architects and roof designers—through the design of proper construction details—can significantly affect the long-term control of airflow into and through the building enclosure. It’s prudent to specify the use of air barriers that are constructible, compatible and properly located to reduce or eliminate paths for airflow.
There are three types of air movement that need to be considered when designing the building enclosure: infiltration, exfiltration and intrusion. Figure 1 shows each graphically. Essentially, infiltration and exfiltration are types of air movement through the entire building enclosure. Air infiltration is air from the exterior that enters the building through the enclosure, and air exfiltration is air from the interior that exits the building across the building enclosure. Air moving through the enclosure (both infiltration and exfiltration) is also called air leakage. Intrusion is air that enters a roof or wall system but does not exit to the exterior; an air barrier prevents the passage of air through the entire building enclosure.